Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.705
Filtrar
1.
Int J Biol Macromol ; 261(Pt 2): 129870, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302022

RESUMO

A novel carbonyl reductase from Hyphopichia burtoni (HbKR) was discovered by gene mining. HbKR is a NADPH-dependent dual function enzyme with reduction and oxidation activity belonging to SDR superfamily. HbKR strictly follows Prelog priority in the reduction of long-chain aliphatic keto acids/esters containing remote carbonyl groups, such as 4-oxodecanoic acid and 5-oxodecanoic acid, producing (S)-γ-decalactone and (S)-δ-decalactone in >99 % e.e. Tailor-made engineering of HbKR was conducted to improve its catalytic efficiency. Variant F207A/F86M was obtained with specific activity of 8.37 U/mg toward 5-oxodecanoic acid, which was 9.7-fold of its parent. Employing F207A/F86M, 100 mM 5-oxodecanoic acid could be reduced into optically pure (S)-δ-decalactone. Molecular docking analysis indicates that substitution of aromatic Phe with smaller residues renders sufficient space for accommodating substrates in a more stable conformation. This study offers an efficient biocatalyst for the biosynthesis of (S)-lactones, and provides guidance for engineering carbonyl reductases toward structurally hindered substrates.


Assuntos
Oxirredutases do Álcool , Oxirredutases , Oxirredutases/genética , Simulação de Acoplamento Molecular , Oxirredutases do Álcool/química , Lactonas , Especificidade por Substrato , Aldeído Redutase
2.
Chembiochem ; 25(5): e202300811, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38269599

RESUMO

Artificial dye-coupled assays have been widely adopted as a rapid and convenient method to assess the activity of methanol dehydrogenases (MDH). Lanthanide(Ln)-dependent XoxF-MDHs are able to incorporate different lanthanides (Lns) in their active site. Dye-coupled assays showed that the earlier Lns exhibit a higher enzyme activity than the late Lns. Despite widespread use, there are limitations: oftentimes a pH of 9 and activators are required for the assay. Moreover, Ln-MDH variants are not obtained by isolation from the cells grown with the respective Ln, but by incubation of an apo-MDH with the Ln. Herein, we report the cultivation of Ln-dependent methanotroph Methylacidiphilum fumariolicum SolV with nine different Lns, the isolation of the respective MDHs and the assessment of the enzyme activity using the dye-coupled assay. We compare these results with a protein-coupled assay using its physiological electron acceptor cytochrome cGJ (cyt cGJ ). Depending on the assay, two distinct trends are observed among the Ln series. The specific enzyme activity of La-, Ce- and Pr-MDH, as measured by the protein-coupled assay, exceeds that measured by the dye-coupled assay. This suggests that early Lns also have a positive effect on the interaction between XoxF-MDH and its cyt cGJ thereby increasing functional efficiency.


Assuntos
Elementos da Série dos Lantanídeos , Elementos da Série dos Lantanídeos/química , Oxirredutases do Álcool/química , Citocromos c/química , Malato Desidrogenase
3.
J Biol Chem ; 300(1): 105491, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995940

RESUMO

l-2-hydroxyglutarate dehydrogenase (L2HGDH) is a mitochondrial membrane-associated metabolic enzyme, which catalyzes the oxidation of l-2-hydroxyglutarate (l-2-HG) to 2-oxoglutarate (2-OG). Mutations in human L2HGDH lead to abnormal accumulation of l-2-HG, which causes a neurometabolic disorder named l-2-hydroxyglutaric aciduria (l-2-HGA). Here, we report the crystal structures of Drosophila melanogaster L2HGDH (dmL2HGDH) in FAD-bound form and in complex with FAD and 2-OG and show that dmL2HGDH exhibits high activity and substrate specificity for l-2-HG. dmL2HGDH consists of an FAD-binding domain and a substrate-binding domain, and the active site is located at the interface of the two domains with 2-OG binding to the re-face of the isoalloxazine moiety of FAD. Mutagenesis and activity assay confirmed the functional roles of key residues involved in the substrate binding and catalytic reaction and showed that most of the mutations of dmL2HGDH equivalent to l-2-HGA-associated mutations of human L2HGDH led to complete loss of the activity. The structural and biochemical data together reveal the molecular basis for the substrate specificity and catalytic mechanism of L2HGDH and provide insights into the functional roles of human L2HGDH mutations in the pathogeneses of l-2-HGA.


Assuntos
Oxirredutases do Álcool , Encefalopatias Metabólicas Congênitas , Drosophila melanogaster , Modelos Moleculares , Animais , Humanos , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Encefalopatias Metabólicas Congênitas/enzimologia , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/fisiopatologia , Drosophila melanogaster/enzimologia , Glutaratos/metabolismo , Mutação , Domínio Catalítico/genética , Especificidade por Substrato/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Eur J Med Chem ; 258: 115611, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37421887

RESUMO

Phenotypic screening of an in-house library of small molecule purine derivatives against Mycobacterium tuberculosis (Mtb) led to the identification of 2-morpholino-7-(naphthalen-2-ylmethyl)-1,7-dihydro-6H-purin-6-one 10 as a potent antimycobacterial agent with MIC99 of 4 µM. Thorough structure-activity relationship studies revealed the importance of 7-(naphthalen-2-ylmethyl) substitution for antimycobacterial activity, yet opened the possibility of structural modifications at positions 2 and 6 of the purine core. As the result, optimized analogues with 6-amino or ethylamino substitution 56 and 64, respectively, were developed. These compounds showed strong in vitro antimycobacterial activity with MIC of 1 µM against Mtb H37Rv and against several clinically isolated drug-resistant strains, had limited toxicity to mammalian cell lines, medium clearance with respect to phase I metabolic deactivation (27 and 16.8 µL/min/mg), sufficient aqueous solubility (>90 µM) and high plasma stability. Interestingly, investigated purines, including compounds 56 and 64, lacked activity against a panel of Gram-negative and Gram-positive bacterial strains, indicating a specific mycobacterial molecular target. To investigate the mechanism of action, Mtb mutants resistant to hit compound 10 were isolated and their genomes were sequenced. Mutations were found in dprE1 (Rv3790), which encodes decaprenylphosphoryl-ß-d-ribose oxidase DprE1, enzyme essential for the biosynthesis of arabinose, a vital component of the mycobacterial cell wall. Inhibition of DprE1 by 2,6-disubstituted 7-(naphthalen-2-ylmethyl)-7H-purines was proved using radiolabelling experiments in Mtb H37Rv in vitro. Finally, structure-binding relationships between selected purines and DprE1 using molecular modeling studies in tandem with molecular dynamic simulations revealed the key structural features for effective drug-target interaction.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Animais , Antituberculosos/química , Oxirredutases do Álcool/química , Purinas/farmacologia , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Proteínas de Bactérias/metabolismo , Mamíferos/metabolismo
5.
J Biol Chem ; 299(7): 104898, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37295774

RESUMO

Vanillyl alcohol oxidases (VAOs) belong to the 4-phenol oxidases family and are found predominantly in lignin-degrading ascomycetes. Systematical investigation of the enzyme family at the sequence level resulted in discovery and characterization of the second recombinantly produced VAO member, DcVAO, from Diplodia corticola. Remarkably high activities for 2,6-substituted substrates like 4-allyl-2,6-dimethoxy-phenol (3.5 ± 0.02 U mg-1) or 4-(hydroxymethyl)-2,6-dimethoxyphenol (6.3 ± 0.5 U mg-1) were observed, which could be attributed to a Phe to Ala exchange in the catalytic center. In order to rationalize this rare substrate preference among VAOs, we resurrected and characterized three ancestral enzymes and performed mutagenesis analyses. The results indicate that a Cys/Glu exchange was required to retain activity for É£-hydroxylations and shifted the acceptance towards benzyl ethers (up to 4.0 ± 0.1 U mg-1). Our findings contribute to the understanding of the functionality of VAO enzyme group, and with DcVAO, we add a new enzyme to the repertoire of ether cleaving biocatalysts.


Assuntos
Oxirredutases do Álcool , Ascomicetos , Biocatálise , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Ascomicetos/enzimologia , Fenóis/química , Fenóis/metabolismo , Especificidade por Substrato , Hidroxilação , Éteres/química , Éteres/metabolismo
6.
Microb Biotechnol ; 16(6): 1333-1343, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946330

RESUMO

R-1,3-butanediol (R-1,3-BDO) is an important chiral intermediate of penem and carbapenem synthesis. Among the different synthesis methods to obtain pure enantiomer R-1,3-BDO, oxidation-reduction cascades catalysed by enzymes are promising strategies for its production. Dehydrogenases have been used for the reduction step, but the enantio-selectivity is not high enough for further organic synthesis efforts. Here, a short-chain carbonyl reductase (LnRCR) was evaluated for the reduction step and developed via protein engineering. After docking result analysis with the substrate 4-hydroxy-2-butanone (4H2B), residues were selected for virtual mutagenesis, their substrate-binding energies were compared, and four sites were selected for saturation mutagenesis. High-throughput screening helped identify a Ser154Lys mutant which increased the catalytic efficiency by 115% compared to the parent enzyme. Computer-aided simulations indicated that after single residue replacement, movements in two flexible areas (VTDPAF and SVGFANK) facilitated the volumetric compression of the 4H2B-binding pocket. The number of hydrogen bonds between the stabilized 4H2B-binding pocket of the mutant enzyme and substrate was higher (from four to six) than the wild-type enzyme, while the substrate-binding energy was decreased (from -17.0 kJ/mol to -29.1 kJ/mol). Consequently, the catalytic efficiency increased by approximately 115% and enantio-selectivity increased from 95% to 99%. Our findings indicate that compact and stable substrate-binding pockets are critical for enzyme catalysis. Lastly, the utilization of a microbe expressing the Ser154Lys mutant enzyme was proven to be a robust process to conduct the oxidation-reduction cascade at larger scales.


Assuntos
Oxirredutases do Álcool , Butileno Glicóis , Catálise , Butileno Glicóis/metabolismo , Oxirredutases do Álcool/química , Cinética , Especificidade por Substrato
7.
Tree Physiol ; 43(1): 169-184, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36054375

RESUMO

Accumulation of anthocyanins largely determines the fruit color, and dihydroflavonol 4-reductase (DFR) is a key enzyme involved in the formation of anthocyanins. However, the catalytic and regulatory mechanisms of DFR are unclear. In this study, the gene encoding DFR from Zanthoxylum bungeanum Maxim. was cloned and ZbDFR was analyzed in detail. The ZbDFR accepted dihydrokaempferol, dihydroquercetin and dihydromyricetin as substrates. Flavonols such as myricetin, quercetin and kaempferol significantly inhibited the activity of ZbDFR, while quercitrin and isoquercitrin slightly increased the activity. Quercetin was a competitive inhibitor at low concentrations, and it had a combined effect of competitive and noncompetitive inhibition at high concentrations, which was consistent with ZbDFR having two inhibitor binding sites. In addition, the content of different types of flavonoids in Z. bungeanum peel at green, semi-red and red stage was analyzed, and the in vivo results could be explained by the regulation of ZbDFR activity in vitro. Site-directed mutagenesis combined with enzyme activity experiments showed that Ser128, Tyr163, Phe164 and Lys167 are the key catalytic amino acid residues. The Ser128, Tyr163 and Lys167 were crucial for the hydrogen transfer reaction, and mutation of these amino acids resulted in the loss of all or most of the activity. Phe164 was found to be important for the regulation of ZbDFR by flavonols. Accordingly, ZbDFR is a node at which flavonoids regulate the synthesis of anthocyanins and proanthocyanins.


Assuntos
Quercetina , Zanthoxylum , Quercetina/metabolismo , Antocianinas/metabolismo , Zanthoxylum/genética , Zanthoxylum/metabolismo , Flavonoides/metabolismo , Flavonóis , Oxirredutases , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo
8.
Int J Biol Macromol ; 217: 407-416, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35841957

RESUMO

Phryma leptostachya has attracted increasing attention because it is rich in furofuran lignans with a wide range of biological activities. Biosynthesis of furofuran lignans begins with the dimerization of coniferyl alcohol, one of the monolignol. Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step of monolignol biosynthesis, reducing cinnamyl aldehydes to cinnamyl alcohol. As it is in the terminal position of monolignol biosynthesis, its type and activity can cause significant changes in the total amount and composition of lignans. Herein, combined with bioinformatics analysis and in vitro enzyme assays, we clarified that CAD in P. leptostachya belonged to a multigene family, and identified nearly the entire CAD gene family. Our in-depth characterization about the functions and structures of two major CAD isoforms, PlCAD2 and PlCAD3, showed that PlCAD2 exhibited the highest catalytic activity, and coniferyl aldehyde was its preferred substrate, followed by PlCAD3, and sinapyl aldehyde was its preferred substrate. Considering the accumulation patterns of furofuran lignans and expression patterns of PlCADs, we speculated that PlCAD2 was the predominant CAD isoform responsible for furofuran lignans biosynthesis in P. leptostachya. Moreover, these CADs found here can also provide effective biological parts for lignans and lignins biosynthesis.


Assuntos
Regulação da Expressão Gênica de Plantas , Lignanas , Oxirredutases do Álcool/química , Lignina/química , Filogenia
9.
Phys Chem Chem Phys ; 24(25): 15397-15405, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35704886

RESUMO

Pyrroloquinoline quinone (PQQ) is a redox cofactor in calcium- and lanthanide-dependent alcohol dehydrogenases that has been known and studied for over 40 years. Despite its long history, many questions regarding its fluorescence properties, speciation in solution and in the active site of alcohol dehydrogenase remain open. Here we investigate the effects of pH and temperature on the distribution of different PQQ species (H3PQQ to PQQ3- in addition to water adducts and in complex with lanthanides) with NMR and UV-Vis spectroscopy as well as time-resolved laser-induced fluorescence spectroscopy (TRLFS). Using a europium derivative from a new, recently-discovered class of lanthanide-dependent methanol dehydrogenase (MDH) enzymes, we utilized two techniques to monitor Ln binding to the active sites of these enzymes. Employing TRLFS, we were able to follow Eu(III) binding directly to the active site of MDH using its luminescence and could quantify three Eu(III) states: Eu(III) in the active site of MDH, but also in solution as PQQ-bound Eu(III) and in the aquo-ion form. Additionally, we used the antenna effect to study PQQ and simultaneously Eu(III) in the active site.


Assuntos
Elementos da Série dos Lantanídeos , Cofator PQQ , Oxirredutases do Álcool/química , Metanol/química , Cofator PQQ/química
10.
Acta Crystallogr D Struct Biol ; 78(Pt 1): 113-123, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34981767

RESUMO

Enzyme catalysis has emerged as a key technology for developing efficient, sustainable processes in the chemical, biotechnological and pharmaceutical industries. Plants provide large and diverse pools of biosynthetic enzymes that facilitate complex reactions, such as the formation of intricate terpene carbon skeletons, with exquisite specificity. High-resolution structural analysis of these enzymes is crucial in order to understand their mechanisms and modulate their properties by targeted engineering. Although cryo-electron microscopy (cryoEM) has revolutionized structural biology, its applicability to high-resolution structural analysis of comparatively small enzymes has so far been largely unexplored. Here, it is shown that cryoEM can reveal the structures of plant borneol dehydrogenases of ∼120 kDa at or below 2 Šresolution, paving the way for the rapid development of new biocatalysts that can provide access to bioactive terpenes and terpenoids.


Assuntos
Catálise , Microscopia Crioeletrônica/métodos , Enzimas/química , Plantas/enzimologia , Oxirredutases do Álcool/química , Modelos Moleculares , Estrutura Molecular , Engenharia de Proteínas/métodos , Salvia/química , Salvia/genética , Salvia officinalis/química , Salvia officinalis/genética , Terpenos/química
11.
Chembiochem ; 23(5): e202100589, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34951083

RESUMO

(S)-3-Cyclopentyl-3-hydroxypropanenitrile is the key precursor for the synthesis of ruxolitinib. The bioreduction of 3-cyclopentyl-3-ketopropanenitrile (1 a) offers an attractive method to access this important compound. A carbonyl reductase (PhADH) from Paraburkholderia hospita catalyzed the reduction of 1 a giving the (S)-alcohol (1 b) with 85 % ee. Rational engineering of PhADH resulted in a double mutant H93C/A139L, which enhanced the enantioselectivity from 85 % to >98 %, as well as a 6.3-fold improvement in the specific activity. The bioreduction of 1 a was performed at 200 g/L (1.5 M) substrate concentration, leading to isolation of (S)-1 b in 91 % yield. Similarly, using this mutant enzyme, 3-cyclohexyl-3-ketopropanenitrile (2 a) and 3-phenyl-3-ketopropanenitrile (3 a) were reduced at high concentration affording the corresponding alcohols in >99 % ee, and 90 % and 92 % yield, respectively. The results showed that the variant H93C/A139L was a powerful biocatalyst for reduction of ß-substituted-ß-ketonitriles.


Assuntos
Oxirredutases do Álcool , Nitrilas , Oxirredutases do Álcool/química , Etanol , Pirazóis , Pirimidinas , Estereoisomerismo
12.
Biotechnol Appl Biochem ; 69(6): 2530-2539, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34902878

RESUMO

A novel short-chain alcohol dehydrogenase from Tarenaya hassleriana labeled as putative tropinone reductase was heterologously expressed in Escherichia coli. Purified recombinant protein had molecular weight of approximately 30 kDa on 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. T. hassleriana tropinone reductase-like enzyme (ThTRL) had not detected oxidative activity. The optimum pH for enzyme activity of ThTRL was weakly acidic (pH 5.0). 50°C was the optimum temperature for ThTRL. The highest catalytic efficiency and substrate affinity for recombinant ThTRL were observed with (+)-camphorquinone (kcat /Km  = 814.3 s-1  mM-1 , Km  = 44.25 µM). ThTRL exhibited a broad substrate specificity and reduced various carbonyl compounds, including small lipophilic aldehydes and ketones, terpene ketones, and their structural analogs.


Assuntos
Oxirredutases do Álcool , Escherichia coli , Especificidade por Substrato , Oxirredutases do Álcool/química , Proteínas Recombinantes/química , Escherichia coli/genética , Escherichia coli/metabolismo , Cetonas/metabolismo , Cinética , Peso Molecular
13.
Biochimie ; 193: 103-114, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34757166

RESUMO

Ketopantoate reductases (KPRs) catalyse NADPH-dependent reduction of ketopantoate to pantoate, the rate-limiting step of pantothenate biosynthetic pathway. In our recent study, we showed KPRs are under dynamic evolutionary selection and highlighted the possible role of ordered substrate binding kinetics for cofactor selection. To further delineate this at molecular level, here, we perform X-ray crystallographic and biophysical analyses of KPR in presence of non-canonical cofactor NAD+. In our structure, NAD+ was found to be highly dynamic in catalytic pocket of KPR, which could attain stable conformation only in presence of ketopantoate. Further, isothermal calorimetric (ITC) titrations showed that affinity of KPR for ketopantoate is higher in presence of NADP+ than in presence of NAD+ and lowest in absence of redox cofactors. In sum, our results clearly depict two modes of redox cofactor selections in KPRs, firstly by specific salt bridge interactions with unique phosphate moiety of NADP+ and secondly via ordered sequential heterotrophic cooperative binding of substrate ketopantoate.


Assuntos
Oxirredutases do Álcool/química , Proteínas de Bactérias/química , Pseudomonas aeruginosa/enzimologia , Sítios de Ligação , Cristalografia por Raios X , Especificidade por Substrato
14.
Angew Chem Int Ed Engl ; 61(1): e202111054, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34664348

RESUMO

Many existing in vitro biosystems harness power from the chemical energy contained in substrates and co-substrates, and light or electric energy provided from abiotic parts, leading to a compromise in atom economy, incompatibility between biological and abiotic parts, and most importantly, incapability to spatiotemporally co-regenerate ATP and NADPH. In this study, we developed a light-powered in vitro biosystem for poly(3-hydroxybutyrate) (PHB) synthesis using natural thylakoid membranes (TMs) to regenerate ATP and NADPH for a five-enzyme cascade. Through effective coupling of cofactor regeneration and mass conversion, 20 mM PHB was yielded from 50 mM sodium acetate with a molar conversion efficiency of carbon of 80.0 % and a light-energy conversion efficiency of 3.04 %, which are much higher than the efficiencies of similar in vitro PHB synthesis biosystems. This suggests the promise of installing TMs as a green engine to drive more enzyme cascades.


Assuntos
Acetilcoenzima A/metabolismo , Acetil-CoA C-Aciltransferase/metabolismo , Aciltransferases/metabolismo , Oxirredutases do Álcool/metabolismo , Hidroxibutiratos/metabolismo , Fosfotransferases/metabolismo , Poliésteres/metabolismo , Acetilcoenzima A/química , Acetil-CoA C-Aciltransferase/química , Aciltransferases/química , Oxirredutases do Álcool/química , Hidroxibutiratos/química , Luz , Fosfotransferases/química , Poliésteres/química
15.
Chembiochem ; 23(3): e202100553, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34859558

RESUMO

Flavonoids are secondary metabolites ubiquitously found in plants. Their antioxidant properties make them highly interesting natural compounds for use in pharmacology. Therefore, unravelling the mechanisms of flavonoid biosynthesis is an important challenge. Among all the enzymes involved in this biosynthetic pathway, dihydroflavonol-4-reductase (DFR) plays a key role in the production of anthocyanins and proanthocyanidins. Here, we provide new information on the mechanism of action of this enzyme by using QM/MM-MD simulations applied to both dihydroquercetin (DHQ) and dihydrokaempferol (DHK) substrates. The consideration of these very similar compounds shed light on the major role played by the enzyme on the stabilization of the transition state but also on the activation of the substrate before the reaction through near-attack conformer effects.


Assuntos
Oxirredutases do Álcool/metabolismo , Flavonoides/biossíntese , Simulação de Dinâmica Molecular , Teoria Quântica , Quercetina/análogos & derivados , Oxirredutases do Álcool/química , Biocatálise , Flavonoides/química , Conformação Molecular , Quercetina/biossíntese , Quercetina/química , Especificidade por Substrato , Vitis/enzimologia
16.
Biomolecules ; 11(12)2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34944552

RESUMO

Freeform bioprinting, realized by extruding ink-containing cells into supporting materials to provide physical support during printing, has fostered significant advances toward the fabrication of cell-laden soft hydrogel constructs with desired spatial control. For further advancement of freeform bioprinting, we aimed to propose a method in which the ink embedded in supporting materials gelate through a cytocompatible and rapid cascade reaction between oxidase and peroxidase. To demonstrate the feasibility of the proposed method, we extruded ink containing choline, horseradish peroxidase (HRP), and a hyaluronic acid derivative, cross-linkable by HRP-catalyzed reaction, into a supporting material containing choline oxidase and successfully obtained three-dimensional hyaluronic acid-based hydrogel constructs with good shape fidelity to blueprints. Cytocompatibility of the bioprinting method was confirmed by the comparable growth of mouse fibroblast cells, released from the printed hydrogels through degradation on cell culture dishes, with those not exposed to the printing process, and considering more than 85% viability of the enclosed cells during 10 days of culture. Owing to the presence of derivatives of the various biocompatible polymers that are cross-linkable through HRP-mediated cross-linking, our results demonstrate that the novel 3D bioprinting method has great potential in tissue engineering applications.


Assuntos
Oxirredutases do Álcool/metabolismo , Bioimpressão/métodos , Fibroblastos/citologia , Peroxidase do Rábano Silvestre/metabolismo , Ácido Hialurônico/química , Oxirredutases do Álcool/química , Animais , Biocatálise , Técnicas de Cultura de Células , Linhagem Celular , Estudos de Viabilidade , Fibroblastos/metabolismo , Peroxidase do Rábano Silvestre/química , Hidrogéis , Tinta , Camundongos , Impressão Tridimensional , Engenharia Tecidual , Tecidos Suporte
17.
Cell Mol Life Sci ; 78(24): 8187-8208, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34738149

RESUMO

There is significant contemporary interest in the application of enzymes to replace or augment chemical reagents toward the development of more environmentally sound and sustainable processes. In particular, copper radical oxidases (CRO) from Auxiliary Activity Family 5 Subfamily 2 (AA5_2) are attractive, organic cofactor-free catalysts for the chemoselective oxidation of alcohols to the corresponding aldehydes. These enzymes were first defined by the archetypal galactose-6-oxidase (GalOx, EC 1.1.3.13) from the fungus Fusarium graminearum. The recent discovery of specific alcohol oxidases (EC 1.1.3.7) and aryl alcohol oxidases (EC 1.1.3.47) within AA5_2 has indicated a potentially broad substrate scope among fungal CROs. However, only relatively few AA5_2 members have been characterized to date. Guided by sequence similarity network and phylogenetic analysis, twelve AA5_2 homologs have been recombinantly produced and biochemically characterized in the present study. As defined by their predominant activities, these comprise four galactose 6-oxidases, two raffinose oxidases, four broad-specificity primary alcohol oxidases, and two non-carbohydrate alcohol oxidases. Of particular relevance to applications in biomass valorization, detailed product analysis revealed that two CROs produce the bioplastics monomer furan-2,5-dicarboxylic acid (FDCA) directly from 5-hydroxymethylfurfural (HMF). Furthermore, several CROs could desymmetrize glycerol (a by-product of the biodiesel industry) to D- or L-glyceraldehyde. This study furthers our understanding of CROs by doubling the number of characterized AA5_2 members, which may find future applications as biocatalysts in diverse processes.


Assuntos
Cobre/metabolismo , Radicais Livres/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Metaloproteínas/metabolismo , Oxirredutases/metabolismo , Filogenia , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Cobre/química , Radicais Livres/química , Proteínas Fúngicas/química , Metaloproteínas/química , Oxirredução , Oxirredutases/química , Conformação Proteica , Especificidade por Substrato
18.
Biochem J ; 478(19): 3597-3611, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34542554

RESUMO

The hetero-oligomeric retinoid oxidoreductase complex (ROC) catalyzes the interconversion of all-trans-retinol and all-trans-retinaldehyde to maintain the steady-state output of retinaldehyde, the precursor of all-trans-retinoic acid that regulates the transcription of numerous genes. The interconversion is catalyzed by two distinct components of the ROC: the NAD(H)-dependent retinol dehydrogenase 10 (RDH10) and the NADP(H)-dependent dehydrogenase reductase 3 (DHRS3). The binding between RDH10 and DHRS3 subunits in the ROC results in mutual activation of the subunits. The molecular basis for their activation is currently unknown. Here, we applied site-directed mutagenesis to investigate the roles of amino acid residues previously implied in subunit interactions in other SDRs to obtain the first insight into the subunit interactions in the ROC. The results of these studies suggest that the cofactor binding to RDH10 subunit is critical for the activation of DHRS3 subunit and vice versa. The C-terminal residues 317-331 of RDH10 are critical for the activity of RDH10 homo-oligomers but not for the binding to DHRS3. The C-terminal residues 291-295 are required for DHRS3 subunit activity of the ROC. The highly conserved C-terminal cysteines appear to be involved in inter-subunit communications, affecting the affinity of the cofactor binding site in RDH10 homo-oligomers as well as in the ROC. Modeling of the ROC quaternary structure based on other known structures of SDRs suggests that its integral membrane-associated subunits may be inserted in adjacent membranes of the endoplasmic reticulum (ER), making the formation and function of the ROC dependent on the dynamic nature of the tubular ER network.


Assuntos
Oxirredutases do Álcool/metabolismo , Carbonil Redutase (NADPH)/metabolismo , Proteínas de Membrana/metabolismo , Retinaldeído/metabolismo , Tretinoína/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Animais , Biocatálise , Carbonil Redutase (NADPH)/química , Carbonil Redutase (NADPH)/genética , Domínio Catalítico , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutagênese Sítio-Dirigida/métodos , Estrutura Quaternária de Proteína , Spodoptera/citologia , Relação Estrutura-Atividade
19.
Chembiochem ; 22(22): 3225-3233, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34523783

RESUMO

The vanillyl-alcohol oxidase (VAO) family is a rich source of biocatalysts for the oxidative bioconversion of phenolic compounds. Through genome mining and sequence comparisons, we found that several family members lack a generally conserved catalytic aspartate. This finding led us to study a VAO-homolog featuring a glutamate residue in place of the common aspartate. This 4-ethylphenol oxidase from Gulosibacter chungangensis (Gc4EO) shares 42 % sequence identity with VAO from Penicillium simplicissimum, contains the same 8α-N3 -histidyl-bound FAD and uses oxygen as electron acceptor. However, Gc4EO features a distinct substrate scope and product specificity as it is primarily effective in the dehydrogenation of para-substituted phenols with little generation of hydroxylated products. The three-dimensional structure shows that the characteristic glutamate side chain creates a closely packed environment that may limit water accessibility and thereby protect from hydroxylation. With its high thermal stability, well defined structural properties and high expression yields, Gc4EO may become a catalyst of choice for the specific dehydrogenation of phenolic compounds bearing small substituents.


Assuntos
Actinobacteria/enzimologia , Alcenos/metabolismo , Hidroxibenzoatos/metabolismo , Oxirredutases/metabolismo , Fenóis/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Alcenos/química , Biocatálise , Hidroxibenzoatos/química , Estrutura Molecular , Oxirredutases/química , Penicillium/enzimologia , Fenóis/química
20.
ACS Appl Mater Interfaces ; 13(37): 44329-44338, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34494423

RESUMO

In the present study, a magnetic mimic multi-enzyme system was developed by encapsulating the aryloxyphenoxypropionate (AOPP) herbicide hydrolase QpeH and alcohol oxidase (AOx) in zeolitic imidazolate framework (ZIF-8) nanocrystals with magnetic Fe3O4 nanoparticles (MNPs) to detect AOPP herbicides. The structural, protein loading capacity and loading ratio, porosity, and magnetic properties of QpeH/AOx@mZIF-8 were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, nitrogen sorption, and vibrating sample magnetometry. An AOPP herbicide colorimetric biosensor made with QpeH/AOx@mZIF-8 had the highest sensitivity toward quizalofop-P-ethyl (QpE) with a limit of detection of 8.2 µM. This system was suitable to detect two other AOPP herbicides, including fenoxaprop-P-ethyl (FpE) and haloxyfop-P-methyl (HpE). The practical application of the biosensor was verified through quantitative analysis of QpE residues in industrial wastewater and field soils. Furthermore, QpeH/AOx@mZIF-8 exhibited excellent long-term storage stability (at least 50 days), easy separation by magnet, and reusability (at least 10 cycles), supporting its promising role in simple and low-cost detection of AOPP herbicides in real environmental samples.


Assuntos
Técnicas Biossensoriais/métodos , Colorimetria/métodos , Herbicidas/análise , Estruturas Metalorgânicas/química , Éteres Fenílicos/análise , Propionatos/análise , Oxirredutases do Álcool/química , Proteínas de Bactérias/química , Hidrolases de Éster Carboxílico/química , Enzimas Imobilizadas/química , Herbicidas/química , Hidrólise , Limite de Detecção , Oxazóis/análise , Oxazóis/química , Oxirredução , Éteres Fenílicos/química , Propionatos/química , Pseudomonas/enzimologia , Quinoxalinas/análise , Quinoxalinas/química , Saccharomycetales/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...